PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA ENERGÍA REVISTA DYNA ENERGÍA

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes/Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News Energy-Sustainability
    • Newsletter
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
    • Make a submission
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

Vote:

Results: 

5 points

 1  Votes

FAILURE DETECTION AND PREDICTION IN WIND TURBINES BY USING SCADA DATA

JANUARY-DECEMBER 2013   -  Volume: 2 -  Pages: [10 p.]

DOI:

https://doi.org/10.6036/ES5708

Authors:

EDUARDO MARTINEZ CAMARA
-
EMILIO JIMENEZ MACIAS
-
JULIO BLANCO FERNANDEZ
-
JUAN CARLOS SÁENZ-DÍEZ MURO

Disciplines:

  • Industrial technology (INGENIERIA DE MANTENIMIENTO )
  • Power technology (GENERADORES DE ENERGIA )

Downloads:   396

How to cite this paper:  
Download pdf

Download pdf

Received Date :   8 February 2013

Reviewing Date :   24 October 2013

Accepted Date :   29 October 2013


Key words:
Aerogenerador, redes neuronales, árboles de decisión, mantenimiento, energía eólica, Wind turbine, neural networks, boosted trees, maintenance, wind energy
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT:
This article proposes a method for predicting and detecting potential failures in the main components of a wind turbine, based on data collected by a built-in SCADA (Supervisory Control And Data Acquisition) monitoring system. Artificial intelligence techniques such as neural networks and boosted trees are used to model the behaviour of the system and to select optimal input parameters. Once the method has been defined, it is applied to an actual case study of a malfunction in a multiplier, with data from a wind farm located in la Rioja (Spain), owned by Grupo Eólicas Riojanas (GER).
The combination of a detailed study of the optimal parameters for modelling the specific behaviour of the temperature of the multiplier and the development of a model based on neural networks enables the normal behaviour of a multiplier to be modelled effectively with no deterioration in its operation. This means that the potential processes of deterioration in the multiplier can be analysed regularly and consequently actions can be taken accordingly before an irreparable malfunction requiring replacement.

Keywords: Wind turbine; neural networks; boosted trees; maintenance; wind energy

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA Energia y Sostenibilidad 2012

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-energia.com - Web: http://www.dyna-energia.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes/Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News Energy-Sustainability
    • Newsletter
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
    • Submit
    • Make a submission
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...