PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA NEW TECHNOLOGIES REVISTA DYNA NEW TECHNOLOGIES

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

PREVENTION STRATEGY OF MAIN NON-COMMUNICABLE DISEASES USING ARTIFICIAL NEURAL NETWORKS

 |    : /

JANUARY-DECEMBER 2023   -  Volume: 10 -  Pages: [10P.]

DOI:

https://doi.org/10.6036/NT10765

Authors:

SILVIA SOLEDAD MORENO GUTIERREZ
-
MARGARITA GARCIA LOPEZ

Disciplines:

  • Economics of technological change (HERRAMIENTAS CREATIVAS E INNOVADORAS )

Downloads:   18

How to cite this paper:  
Download pdf

Download pdf

Received Date :   16 November 2022

Reviewing Date :   23 November 2022

Accepted Date :   31 January 2023


Key words:
Predicción, redes neuronales artificiales, ciencia de datos, trastornos físicos, trastornos mentales, Prediction, artificial neural networks, data science, physical disorders, mental disorders
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT:
The aim of this work was to build four models for the prediction of Noncommunicable Diseases (NCD) to support early diagnosis by applying deep Artificial Neural Networks (ANN) and clustering; through comparative analysis, the best paradigm was chosen. Following the methodology for data science, the objectives, project requirements and the quality of the data were analyzed, cleaning and normalization was carried out, the identification of the optimal number of groups by means of the silhouette method. Each model was trained with 70% of records and validated with the remaining 30% using the confusion matrix and F1. The comparative analysis showed the best performance of the multilayer perceptron with deep learning (over a network with clustering radial basis functions), its accuracy, precision, sensitivity, specificity and F1 were 99%, 97%, 100%, 97% and 98% respectively for lung cancer, 99%, 98%, 100%, 100% and 98% for breast cancer, Alzheimer with 98.6%, 100%, 96%, 100% and 97%, and depression with 91% , 87%, 93%, 88% and 88%, these models constitute an automated solution to strengthen medical diagnosis, they are considered a strategic support in the prevention of NCD, will contribute to improving the prognosis and quality of life of vulnerable people.
Keywords: Prediction, artificial neural networks, data science, physical disorders, mental disorders

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA New Technologies Journal

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-newtech.com - Web: http://www.dyna-newtech.com

 

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...