PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA NEW TECHNOLOGIES REVISTA DYNA NEW TECHNOLOGIES

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

PREDICTION OF MARS METEOROLOGICAL VARIABLES USING ARTIFICIAL NEURAL NETWORKS

 |    : /

JANUARY-DECEMBER 2022   -  Volume: 9 -  Pages: [15p.]

DOI:

https://doi.org/10.6036/NT10369

Authors:

ALEJANDRO DE CABO GARCIA
-
ALFONSO DELGADO BONAL
-
BELEN PEREZ LANCHO
-
JORGE PLA GARCIA
-
GERMAN MARTINEZ

Disciplines:

  • INFORMATION TECHNOLOGY AND KNOWLEDGE (INTELIGENCIA ARTIFICIAL Y SIMULACION )

Downloads:   46

How to cite this paper:  
Download pdf

Download pdf

Received Date :   4 May 2021

Reviewing Date :   4 May 2021

Accepted Date :   2 December 2021


Key words:
ANN, Mars, Weather, Forecast, Curiosity, Redes neruonales artificiales, Marte, Climatología, Predicción
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT
Weather forecasting is the task of determining future states of the atmosphere for a given location and time. The techniques to carry out the prediction range from deterministic approaches using complex fluid dynamics models to data-driven approaches using artificial intelligence. While the former is mainly focused on the creation of General Circulation Models, the later are starting to replace them in many situations for Earth’s meteorology and astrophysics. Here, we develop an artificial neural network to perform Mars’ weather forecasting using environmental measurements from the Vikings and Mars Science Laboratory missions. The methodology followed in of this study is a data-driven approach; we make use of computer science expertise which has been long applied to Earth, but not on Mars yet. To do so, we create an artificial neuronal network that predicts the meteorological conditions of the following day using the previous day as input. We show that temperature and pressure are among the most important variables, and that ANN can perform with a 0.5 to 1% accuracy in forecasting diurnal changes in the selected variables.

Keywords: ANN, Mars, Weather, Forecast, Curiosity

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA New Technologies Journal

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-newtech.com - Web: http://www.dyna-newtech.com

 

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...