PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA NEW TECHNOLOGIES REVISTA DYNA NEW TECHNOLOGIES

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

5 points

 6  Votes

CLASSFICATION OF WIRE PLASTIC DEFORMATION PROCESSES USING CONVOLUTIONAL NEURAL NETWORKS

 |    : /

JANUARY-DECEMBER 2023   -  Volume: 10 -  Pages: [12P.]

DOI:

https://doi.org/10.6036/NT10918

Authors:

MATHEUS CAPELIN -
ARTHUR D. K. RODRIGUES
-
GIULIANA DE LIMA MARCONDES MONTEIRO
-
GUSTAVO ARISTIDES SANTANA MARTINEZ
-
LUIZ TADEU FERNANDES ELENO
-
WEI LIANG QIAN

Disciplines:

  • INFORMATION TECHNOLOGY AND KNOWLEDGE (INTELIGENCIA ARTIFICIAL Y SIMULACION )
  • Solid state physics (ESTRUCTURA CRISTALINA )
  • Industrial technology (INGENIERIA DE PROCESOS )

Downloads:   26

How to cite this paper:  
Download pdf

Download pdf

Received Date :   11 April 2023

Reviewing Date :   22 May 2023

Accepted Date :   27 November 2023


Key words:
machine learning, convolutional neural network, image processing, wire plastic deformation processes, CNN, aprendizaje automático, red neuronal convolucional, procesamiento de imágenes, procesos de deformación plástica del alambre
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT:
Machine learning, particularly the convolutional neural network (CNN), is a potentially competent tool for image processing. In this work, the technique is ?rst utilized to perform an analysis of the di?erent wire plastic deformation processes. In particular, a CNN is established and trained using 3200 image fractions with a resolution of 80 × 80. The relevant architecture consists of three convolutional layers in conjunction with polling layers with relu activation. By properly tuning the network, we achieve good training and validation accuracies of 97.7% and 97.1% to identify between two underlying treatments by observing only an insigni?cant cropped fraction of the material’s cross-sectional pro?le. We argue that speci?c features of the architecture, such as the augmentation process’s rescaling parameter, are essential in guaranteeing a satisfactory accuracy rate. The possible implications of the present study are also addressed.

Keywords: machine learning, convolutional neural network, image processing, wire plastic deformation processes

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA New Technologies Journal

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-newtech.com - Web: http://www.dyna-newtech.com

 

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...